
AD-AOBI 308 MARYLAND UNIV COLLEGE PARK COM4PUTER SCIENCE CENTER F/6 2/
PARALLEL COMPUTATION OF CONTOUR PROPERTIES. (U)
DEC 79 T DUBITZKI' A ROSENFELD. A Y VU SAFOSR-77-3271

UNCLASSIFIED TR-848 AFOSR-TR-800143 ML0-muuuuuuuuuum

OSR -.TR - - 0 1 4 3

COMPUTER SCIENCE
' TECHNICAL REPORT SERIES

a~

, MAR 4 t98-

UNIVERSITY OF MARYLAND A..
COLLEGE PA MARYLAND

20742

613tributionuzabdg&

TECHNICA REOR SERIES..

TR-848 December, 1979
AFOSR-77- 3271

PARALLEL COMPUTATION
OF CONTOUR PROPERTIES

Tsvi Dubitzki
Angela Y. Wu

Azriel Rosenfeld

Computer Vision Laboratory
Computer Science Center
University of Maryland
College Park, MD 20742

ABSTRACT

Some contour properties can be derived in parallel by a string or
cycle of automata in linear time, faster than can be done with a single

processor. In particular the intersection points of two contours, the
straightness of a line, the union or intersection of two contours, ana
polygonal approximations of a contour are computed in linear time.

The support of the U.S. Air Force Office of Scientific Research under Grant
AFOSR-77-3271 is gratefully acknowledged, as is the help of Eleanor Waters
and Kathryn Riley in preparinq this paper.

L- 0, 01

SE CUl ~ .51- REOR fC/GNTT PG ~.n redREAD INSTRUCTIONS

X REPORT DOCUMENTATION PAGE BEFORE COMPLE°fIU FCRM
ER . 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMU1

4 . MYTLE (and Subtitle) 5 TYPE OF REPORT & PERIOD COVERED

-PARALLELCOMPUTATION OF CONTOUR PROPERTIES, Inter /
-. PERFORMING ORG. REPT NUMBER

7..& M 8,CONTRACT OR GRANT NUMBER(s)

(, Tsvi/Dubitzki \
,Azriel/Rosenfeld ,,
IAngela Y ,u Jio,, FSo737
L .u 4A: -737

9PERFORMING ORGANIZATION NAME AND ADDRESS ... 0 PROGRAM ELEIMENT,.PROJECT, TASK .

AREA & WORK UNIT NUA"Ifi- -

University of Maryland

Computer Science Center"
College Park. MD 20742 6110 -4 23,4/A2

I1. CONTROLLING OFFICE NAME AND ADDRESS (' I REPORT _AT.D:, ec 79Air Force Office of Scientific Research/NM (I /. ------- y

Bolling AFB, Washington, D. C. 20332 W_ . NUMBER OF PAGES /.7 /
26 / ' - ,- /7

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of eport)

I.1 UNCLASSIFIED
15a. DECL ASSI FIC ATI ONDOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Image processing
Pattern recognition

Cellular automata

16, ABSTRACT (Continue on reverae aide If necessary and Identify by block number)

Some contour properties can be derived in parallel by a string or cycle of

automata in linear time, faster than can be done with a single processor.

In particular the intersection points of two contours, the straightness of

a line, the union or intersection of two contours, and polygonal approxima-

tions of a contour are computed in linear time.

FOR-I

DD JAN 3 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED
1 i ,9 / (SECURITY CLASSIFICATION OF THIS PAGE (en Data entered)

1. Introduction

A cycle automaton is a cyclically connected string of N processors,

i.e., the last processor is connected to the first one. One of the pro-

cessors is designated as the distinguished processor D.

The power of this type of cellular automaton lies in its parallel

computation capability and in the option of rotating information cyclically,

thus shortening the time of information propagation and comparison.

In this paper we study the computation of properties of a contour

by a cycle automaton that initially stores the chain code of the contour.

Parallelism is used to speed up the computation of straightness, curvature,

polygonal approximations, convexity, intersection points, and the union

or intersection of two contours.

Note that if the cycle automaton stores an open curve then the chain

code leading back from the Nth processor to the distinguished processor D

is null.

For some of the computation algorithms, it is necessary for each pro-

cessor to know its coordinates relative to D. The coordinates are easily

found from the chain codes but each processor must have memory at least

O(log N) in order to compute and store them.

/.

ifi

2. Extrema and inflection points

Finding inflection or extremum points on a curve can be done sequen-

tially in linear time since they are local properties. Using parallelism,

extrema cannot be found in faster than linear time. Nevertheless, we

define these processes for a cycle automaton storing the chain code of a

curve so tha.t we can use these methods for further computations in the

following sections.

Let a curve of N points be stored in a cycle automaton L of N pro-

cessors. Let C represent the 8-adjacency (3-bit) chain code of a point A

of L, Cp(A) its predecessor's chain code and Cs(A) its successor's chain

code. The cistinguished node D starts a signal along L. Upon arriving

at a processor, say A, the signal causes it to check if A is an inflec-

tion point or extremum.

The c-iterion for an inflection point at A is (see Fig. l(a)):

1) CA f Cp(A)

2) There is a point B such that Ci=Csi for A.i<p(B) but C-B c p(B)

and CB (Cp(B)+4) modulo 8.

3) C(-Cp(A)l 4 2 or (8-ICB-Cp(A)I) s. 2

If the arc AB contains more than 2 points then the inflection point

is at the midpoint of the arc AB. Processor A finds that midpoint as

follows: A sends a unit speed signal and a 1/3 speed signal towards B.

The unit speed signal bounces back from B and meets the 1/3 speed signal

at the middle of AB. The original signal is prevented from looking for

inflection points as long as conditions 2 and 3 are checked.

A simple criterion for an extremum at A is (Fig. l(b)): Cp(A) CA ,

i.e. any change in the direction of the curve is an extremum. If we are

dealing with a simple contour where the interior of the contour is always

on one side when we traverse it in a given direction, then it is possible

to determine which extremum point is a minimum and which is a maximum with

respect to the interiors. For example: if we traverse the contour with

the interior always on our right side then the condition for a maximum is

(for 8-adjacency) Ci = Cp(i)+5,6, or 7 (modulo 8), and the condition for

a minimum is C i Cp(i)+ 1,2, or 3 (modulo 8).

3. Straight line detection

Let L be a digital arc. A necessary condition for L to be a digiti-

zation of a straight line is to be composed of alternating runs of points

(a run is a collection of consecutive points in one direction) where the

runs have only two different directions that differ by 45, and for one of

these directions, the run length must ba 1. This property can be detected

by a cycle automaton storing the chain :ode of the curve in linear time.

Upon verifying that the curve satisfies this property we rotate it to lie

in the first octant of the plane (0.5) and to have the distinguished

node as the leftmost node. Let a leftrmost or a rightmost point of a run

of length >1 in the first octant be ca-ed a left or right step-node

respectively (see Fig. 2).

It is proved in C5] that L represents a straight line iff it satisfies

the chord property, i.e. any point on a chord joining two points on L is

at less than unit distance from L. Formally, if (x,y) are the coordinates

of a point on the chord, then there e>ysts a point (i,j) on L such

that max(Jx-i1,Jy-j)<. Clearly one) nly needs to check the chords whose

endpoints are both left ends, or both right ends, of runs; and one only

needs to check those intermediate poinzs that lie above right run ends,

or below left run ends. Now consider A point A which is the left end of a

run, and the chord AB which has maximal slope among all the chords AQ such

that Q is a left step node and lies to the right of A. If AB is near L,

then every right step node between points A and B is within distance 1

from any of these AQ's. For any point P to the right of B, the chord BP

lies above AP since the slope of AP is less than the slope of AB. Thus

chord BP near L implies that AP is near L between B and P. The chords

joining right step nodes have analogous properties.

By using a cycle automaton of N processors, we can determine whether

the curve is a straight line by checking the chord property at all the

run end nodes along the curve. This is done as follows: 0, the distin-

guished node, which is the leftmost node of the cycle automaton, sends a

signal that causes the processors to compute their coordinates (assuming

D has coordinates (0,0)) and also marks the left and right step nodes in

L (see Fig. 2). As soon as a left end node knows its coordinates, it

propagates them to the left. Whenever any left step node A receives the

coordinates of another left step node B 4t computes the pair (XA-XB,YA-YB)

which represents the slope of the line connecting A and B. Each time A

receives the coordinates of another left step node it updates its pair

so as to keep the pair which gives the maximum slope. When A receives

the signal from the rightmost node, it has the slope of the steepest chord

at A. A starts to propagate the slope pairs rightward together with a

counter (initialized to zero) which increments by I for each move from

node to node. Upon receiving such a pair a node computes the distance

between itself and the line represented by the slope, i.e. if the inspected

node has the coordinates (x,y) and the incoming pair is (1xi, Yi), the

node checks whether 1 1 counteri'YJ< 1. If this condition is violated

a rejection signal is sent to D meaning that the digitized curve L is not

a straight line. The propagation of a pair (Ixi, yi) stops at the node

where counter i = 1xi , that is, when the pair arrives at the farthest node

giving the slope represented by (Axi, yi).

i i I I !I I . . . i i1

When D propagates its maximal slope pairs to the right, it also sends

a unit speed (if we assume distance conditions can be checked in one time

step) timing signal to the right, which bounces back at the rigntnost node.

If the timing signal returns to D without any rejection signal, D starts a

similar process of computing minimal slopes between rightmost ooi;rts of the

runs (right step nodes) and looking for violation of the chord property

below L. If this time too no rejection signal comes back to D, L is de-

clared to be a straight line. Clearly the above procedure is a linear

time algorithm. Detecting straightness using one processor takes O(N
2

time steps.

4. Intersection

4.1 Self intersection and touching of a curve

Given a cycle automaton storing the chain code of a curve, we can

determine wnether the curve intersects itself and where. The distinguished

processor D which has tne coordinates (0,0) sends a signal around the curve

which causes each node i to compute its coordinates (xiY i) from the co-

ordinates of its predecessor node i-l. Upon coming back to D the signal

causes the cnain code and the coordinates of the nodes together with the

cnain code of their oredecessors to go around the cycle. Each processor i

comoares tne incoming coordinates of processor j to its own to decide

.Nnetner it is a self-intersection or a self-touching node. There are two

coordinates (i)= coordinates (5)

Let 'i =in(CiCp(i)) and k = max(C ,i)) where C = C+4 (mod 8) for" -d1 ,ppji

3-adjacency. if C and C are both inside the closed interval [h,k]

or ootn outside the open interval (h,k), then the curve touches itself

at tne point i 'see Fig. 3). In the other cases we have a self-intersection

at the point i.

2) coordinates (i) coordinates (j)

'de have a self-intersection at A and B (see Fig. 4) when

xA = XB' Xp(A) = Xp(B)

A = Yp(B)' YB = Yp(A)

or analogously with x and y interchanged.

The propagation of the coordinates and the comparisons take 0(N)

time steps after which each intersection or touching nooe is marked.

Looking for self-intersections along a curve without using a cycle

automaton would take 0(N 2) time steps as the computations performed by

the N processors in parallel have to be done in sequence by one processor:

N stages, each of 0(N) time steps.

4.2 Intersection of two curves

Let the first curve (Li) have distinguished node Dl and NI processors.

Similarly tne second curve (L2) has D2 and N2. Dl and D2 are connected

and know their own coordinates in a cormmon coordinate system. Dl and D2

start sequential processes along their own cycle automata to compute the

coordinates of all the nodes (processors) along their cycles using their

coordinates and the chain codes. When the coordinate computation signal

comes back to 01 it starts pushing the coordinates, the chain code

and the predecessor's chain code of its own cycle nodes into a special

channel of L2 through D2. The same is done by L2 to Ll. At this phase

each processor compares its own coordinates with those coming in the

special channel. Using the same criteria as in Section 4.1, one can mark

the intersections and touching nodes.

This process takes a total of 0(Nl+N2) time steps after which 01 or

02 can output the coordinates of their intersection points in linear time.

Sequentially the process would have taken 0(N1.N2) time steps. Storing

and passing the coordinates of the processors in the cycle automata needs

augmented memory of O(log Nl+log N2).

4.3 Inclusion or exclusion of two simple contours

In tnis section we study when a contour is completely surrounded by,

i.e. in the interior of, another contour. Unfortunately it is not always

clear what is the interior of a contour if it has a self-intersection.

A simple contour is a closed curve without self-intersection. Consider

the contours in Fig. 5. The 8-shaped contour of Fig. 5(a) has a well-

defined interior region. It can be turned into a simple curve by turning

the intersection point into a touching point without changing the region

enclosed by the contour. But in Fig. 5(b) we don't know whether the

internal loop belongs to the region or is outside it. If we turn the

intersection point here into a touching point we will make the internal

loop part of the outside of the region. As we are unable to detect locally

which kind of intersection point we have we will deal here only with con-

tours without self-intersections, i.e. si5.ple contours.

Inclusion of two simple contours is determined by checking their inter-

section. if they do not intersect at all then either one contour includes

the other or they exclude each other. This last fact can be determined in

principle by choosing a point, say D2 in L2, and drawing a one way line

from D2 to infinity. Then we count the number of intersection points of

that line with LI. If that number is odd then Li surrounds L2, otherwise

either L2 surrounds Li or L2 excludes LI. Thus if the count is even we

also have to draw a one way line from Dl to infinity and count the number

of intersection points of this line with L2. In case this number is even

then Li excludes L2, otherwise L2 includes LI. Zero is considered even.)

Specifically, 02 sends its own y coordinate to Dl. Dl sends this

YD around Ll with a counter initialized to zero. In sequence the signal

compares Y0 2 to the coordinates of all the points of Li. Upon finding

a point PELI which satisfies YP=YD2 the counter is incremented by I only

in :ase there is an intersection point at P, i.e. the y coordinate of the

successor of P is different from the y coordinate of either P or its

predecessor (otherwise we have a touching point). When it comes back to

Dl the signal has the number of intersection points of the line (starting

at D2) with Li. In case the count is even the same is done by D2. Finding

the. intersection points between contours takes O(NI+N2) time steps. Count-

in, the number of intersection points of the line starting at 02 takes

O(-1) time steps, and counting those of the line starting at Dl takes

0(,'2) time steps, thus a total of O(Nl+N2) time steps.

Finding the chain code of that part of L2 which is inside Ll is almost

equivalent to finding the intersection of Li and L2 and is discussed in

Section 5.3.

5. The union and intersection chain codes of two contours

In this section we show how to determine the chain code of the border

of the union or intersection of two simply-connected regions.

Let Li and L2 be two cycle automata storing the chain codes of two

simple contours. Let 01 and D2 be the distinguished nodes of Li and L2.

D1 and D2 are joined. Note that if we traverse curve LI then consecutive

intersection points of Ll with another curve L2 appear sequentially along

the curves Ll and L2.

Before computing the union or intersection chain code we should recon-

figure the two cycle automata (Ll and L2) so that the common intersection

points and touching points at both these curves will be joined. This can

be done in O(Nl+N2) where NI and N2 are the number of processors in Ll and

L2 respectively.

5.1 The reconfiguration process

Let A be the first intersection point on Ll if we follow the chain

code starting at Dl (Fig. 6(a)). Then A connects itself directly with DI

and Dl connects itself to the corresponding intersection point (A in Fig.

6(a)) in L2 via 02. Finally A in Ll connects itself directly with A in LZ.

All the temporary connections except the connection 01 - 02 are erased

during the reconnection process. Then B in Ll connects itself to B in L2

using the existing connection A(Ll) - A(L2) and so do all the other inter-

section and touching nodes.

5.2 The chain code of the union

Assume that both in Ll and L2 the chain code is clockwise, i.e. if we

traverse Ll or L2 along the chain code the interior of the closed region

is on our right side. If this is not the case then Dl and D2 can communi-

cate and make the necessary modifications to the chain code in one or both

of Ll and L2. Also assume that each node knows which of its neighbors is

its successor along either contour and that at intersection points of Ll

with L2, Ll knows which direction of L2 leads to its interior and vice-

versa.

First we check if L1 and .2 intersect at all by the methods of Section

4.1. If not we find out by the method of Section 4.3 whether one contour

includes the other and output the chain code of that appropriate contour

as the chain code of Li U L2. If Li and L2 do intersect then Dl and D2 send

signals along Li and L2 respectively which find the leftmost node on each

contour. Next D1 exchanges information with D2 about the node chosen by

each of them and the node that is the leftmost of the two is chosen and

marked by either Dl or D2 (whichever found it). That marked node, say X

on Li (Fig. 6(a)), is on the outer border of Li U L2 and therefore we start

the traversal of Li U L2 here. The traversing signal in state p goes along

Li following the chain code until it reaches the first intersection or touch-

ing node with L2 (e.g. A in Fig. 6(a)) and marks it with w. Then it switches

to state q and turns to follow L2 in a direction that leaves the interior

of L2 on the same side that it was while following Li. It is clear that we

must switch to follow L2 as we are looking for the chain code of Li U L2.

The signal follows L2 until it reaches another intersection or touching point

with Li, marks it with w, switches back to state p and continues along the

chain code of Li. This process repeats until the signal comes back to X,

the leftmost point of Li. While traversing Li U L2 the signal pushes back

towards D1 the chain code it encounters along Ll and L2. The chain code

is output in sequence through Dl.

The traversal of the above signal takes O(NI+N2) time steps. It re-

mains to output the chain codes of the holes that might be generated

by the intersection of Ll and L2 (see Fig. 6 (a)). This is done as follows:

X starts a new signal in state p traversing Ll in the same direction as

before. The signal looks for an unmarked intersection node or a singly

marked (with w) touching node. If the signal finds such a node it marks

the node with v, switches to state q and follows Ll further until it reaches

the next intersection or touching node. It marks the node with w, switches

to L2 and follows L2 in a direction that leaves the outside of L2 on the

same side that it was before with respect to the signal traversing Ll.

This guarantees that we are going to surround a region outside the regions

enclosed by Ll and L2, i.e. a hole. Upon coming back to Ll at a node marked

v the signal changes the mark v to w, switches back to state p and follows

Ll again in the previous direction in search for an unmarked intersection

node or a singly marked (with w) touching node. While in state q the

signal pushes back toward Dl the chain code of the curve segment that it

traverses. Note that finally each intersection node is marked once with

w and each touching node twice with w.

At most (Nl+N2) time steps after the signal comes back to Dl all the

chain codes of the holes have been output through Dl.

5.3 The chain code of the intersection

As defined in the previous section we assume that the chain code is

clockwise and that each node of Ll or L2 knows which neighbor is its

successor in the direction of the chain code. Also assume that all inter-

section or touching nodes are found. Again we use Li and L2 reconfigured

as in Section 5.1. If there are no intersection points of Li with L2

we determine whether one contour contains the other (see Section 4.3),

and output the chain code of the inside contour. If Li and L2 exclude

each other the intersection is null. Otherwise let X be the leftmost node

of Li and L2 and assume that X is on LI (Fig. 6(a)) as in Section 5.2.

A clockwise signal p starts at X on Li and follows its chain code.

Whenever the signal meets an intersection of Li with L2 it follows the

branch of the intersecting contour that enters the region enclosed by the

currently followed contour. The same is done with.-respect to touching

nodes, that is, if a curve touches the currently followed contour from the

side of its enclosed region then the traversing signal switches to that

curve that bounces back to the interior of the above enclosed region. But

if the touching node is on the outside of the region enclosed by the cur-

rently followed contour then the signal ignores it.

Each time the signal turns to follow L2 it marks the connection from

Li into L2 so as to avoid a repeated switch to L2 alonc, that path. Once

the signal p following Li changes to signal q to follow L2, it starts

pushing back towards Dl the chain code it traverses. The signal switches

back to p when it wants to turn into L2 at an intersectic n or a touching

point but finds that turn marked, i.e. the signal has just completed tra-

versing the border of a connected component of the intersection.

This process repeats itself until the signal, in state p, visits X

again and stops. Within O(Nl+N2) time units after that the last chain code

of the intersection contour is output through Dl.

The process is illustrated by Fig. 6(b) where two intersection contours:

CABC and DCD are output.

Note that finding the intersection or union of Ll and L2 would have

taken O(N]'N2) time if done sequentially.

6. Curvature

[1] describes two basic methods of computing the curvature of a curve.

These methods can be made faster by storing the chain code of the curve

in a cycle automaton.

The k curvature method [1] involves computing the angle defined at a

point on a curve, between the average direction, V of the curve segment

preceding that point and the curve segment succeeding that point, V 2)

i

In other words:

O)= k
I / ° jl

1~ ;Wi Vi-il

1 = l j i+j-I

where Vi is the chain code of the curve at point i and W. are weights.

The angle between V l) and V 2) is:

e= arc cos(i .

The arc/chord distance method Il] draws the chord connecting each point i

on a curve with the point i+k along that curve and finds the maximum distance

between the curve i,i+k and the chord li+k. This distance is a measure of

the curvature at the point i. The above maximum distance can be computed

by the method discussed in C2] and takes O(k) time steps. Using cycle

automata these methods can be carried out partially in parallel. For in-

stance for the arc/chord distance method a signal propagates sequentially

starting from the distinguished node of the cycle automaton and forcing

each point to compute the maximum distance between the arc i,i+k and the

chord i,i+k. If the cycle automaton has N processors (sampling points)

then this process takes O(N+C(k)) time steps where C(k) is a function of

k. Doing the above computation sequentially with one processor would

take O(C(k).N) time steps. The same argument applies to the k-curvature

method. The degree of the nodes in the cycle automaton is bounded by 4:

one connection to a predecessor, one to a successor, one for the outgoing

chord and one for the incoming chord. Note that if all the processors of

the cycle automata were synchronized beforehand (all in the same initial

state), then the curvature computation would have taken constant time.

7 . Polygonal approximation

Approximating a polygon means representing it by a subset of its

vertices. Polygonal approximation is defined with respect to some crite-

rion of optimality. We shall define it to be that approximating polygon

(of a given number of nodes) which is closest in its area to the area

bounded by the true polygon.

Let AB (Figure 7) be the polygonal approximation of the segment AEDCB.

Then a one step optimal refinement of IU is ADB sine h D > h E and h D > hC,

i.e., the area of the triangle ADB is bigger than the area of any other

triangle based on AB and having its third vertex on the segment AEDCB.

Unfortunately this idea of choosing as a refinement the vertex farthest

from the chord approximating a segment is proved optimal only for convex

segments. Therefore we will deal either with convex polygons or with

general polygons where we are given the concavity points or look for them

by finding minima (Section 1). We will start our polygonal approximation

with the set of concavity points so that each segment considered for re-

finement is convex. The way to look for a vertex farthest from a chord

connecting the endpoints of a polygonal segment is described in [2] and

takes time linear in the number of vertices in the segment.

Using a cycle automaton L which stores the chain code of a polygon

makes it possible to perform the polygonal approximation refinement in

parallel at all the refined segments. Suppose we have a convex polygon

to approximate. At first D, the distinguished node of L, sends a unit

speed signal and a 1/3 speed signal along L. The unit speed

signal bounces back upon arriving cyclically at D and meets the 1/3 speed

signal at the processor which is in the middle of the cycle automaton (A

n Fig. 8). In parallel that middle processor sends clockwise and counter-

clockwise signals along L. Each one of these signals is looking for that

point along the polygon which is farthest from the chord DA or AD. These

points (B and C in Fig. 6) also send clockwise and counterclockwise signals

looking for refinement vertices.* Thus if L contains N vertices the above

3parallel process will take Y4 steps for finding the middle point and at

most 0(N +~ ON + ... O(N-WLl) steps for the refinement. It sums to:2) og

2 2logN 2 +Nl -

Refining the polygonal approximation sequentially might take N2time steps

in the worst case.

If we have a concave polygon to approximate then we would start the

polygonal approximation with the set of vertices located at the concavities,

synchronize them (e.g., by means of the firing squad method [6]) and start

the refinement process in parallel in the convex segments.

*This process continues to whatever degree of refinement we need and all the
vertices chosen up to that point constitute the current polygonal approxi-
mation.

8. The area of a polygon

The computation of the area enclosed by a contour is done by a cycle

automaton in time linear in the number of points in the contour, just as

it is done by a single processor. Then the area enclosed by a contour of

Npoints is given by the trapezoidal rule

N 1
S aix(Yi-l+aiy)

i~l

where Yi = Yi-l 4 aiy

In fact each processor computes its own contribution to this sum, adds it

to the partial sum and propagates it further along the line. Upon coming

back to D the computing signal nas sum S. This process takes augmented

memory at the processors.

References

[1] W. S. Rutkowski, Azriel Rosenfeld, A comparison of corner detection
techniques for chain coded curves. TR-623, Computer Science Center,
University of Maryland, January 1978.

[2] H. Freeman, Computer processing of line drawing images, Computing
Surveys 6, 1974, 57-97.

[3] Larry S. Davis, Shape representation and matching, Ph.D. thesis,
University of Maryland, 1977.

[4] Azriel Rosenfeld, A note on cycle grammars. TR-300, Computer Science
Center, University of Maryland, April 1974.

[5] Azriel Rosenfeld, Digital straight line segments, IEEE Transactions
on Computers 23, 1974, 1264-1269.

[6] F. R. Moore, E. G. Langdon, A generalized firing squad problem.
Information and Control 12, 1968, 212-220.

p (A)

A

7

_ ' ._..._ p(A.) S", (A)
B~I B s (B) "

(a) Inflection point (b) Extremum

Figure 1.

left step nodes x ,x

..... "right step nodes

D

Figure 2: A digitized straight line.

1 0P(i)cP~

- c c

Figure 3:

~p(A) B

1(3)1 KA

Figure 4:

(a) (b)

Figure 5

D A D2

L2 I 2

C

x

(a): intersection points (b): touching and intersection points

Figure 6

h CE hD

Figure 7.

A

0
Figure 8.

